TITRATION PROBLEMS

1. Calculate the volume of 0.500 mol/L NaOH $_{(aq)}$ required to titrate 300.0 mL of 0.200 mol/L HCl $_{(aq)}$?

NaOH HCI

V = ? V = 300.0 mL or 0.300 L

C = 0.500 mol/L C = 0.200 mol/L

 $n_{NaOH} = n_{OH}^{-}$ $n_{HCI} = n_{H}^{+}$

 $n_{HCI} = C \times V = (0.200)(0.300) = 0.0600 \text{ mol}$

 n_{H}^{+} = 0.0600 mol = n_{OH}^{-} = n_{NaOH} at equivalence point

 $V_{NaOH} = n/c = 0.0600 \text{ mol}/0.500 \text{mol}/L = 0.120 \text{ L or } 120 \text{ mL}$

OR

 $NaOH + HCI \rightarrow NaCI + H_2O$

 $n_{HCI} = C \times V = (0.200)(0.300) = 0.0600 \text{ mol}$

n_{HCl} = n_{NaOH}

 $V_{NaOH} = n/c = 0.0600 \text{ mol}/0.500 \text{mol}/L = 0.120 \text{ L or } 120 \text{ mL}$

2. If 250.0 mL of 0.300M $Ca(OH)_2$ is required to titrate 600.0 mL of $HNO_{3(aq)}$, what is the concentration of $HNO_{3(aq)}$?

 $Ca(OH)_2$ HNO₃

V = 250.0 mL or 0.250 L v = 600.0 mL or 0.600 L

C = 0.300 mol/L c = ?

 $n_{OH}^-= 2 \times n_{Ca(OH)2}$ $n_{HCl} = n_H^+$

(2 OH⁻ in 1 Ca(OH)₂) (1 H⁺ in 1 HCl)

 $n_{Ca(OH)2} = C \times V = (0.300)(0.250) = 0.0750 \text{ mol}$

 n_{OH}^{-} = 2(0.0750) = 0.150 mol = n_{H}^{+} = n_{HNO3} at equivalence point

 $C_{\text{HNO3}} = 0.150 \text{mol}/0.600 \text{ L} = 0.250 \text{ M}$

OR

 $Ca(OH)_2 + 2HNO_3 \rightarrow Ca(NO3)_2 + 2H_2O$

 $n_{Ca(OH)2} = C \times V = (0.300)(0.250) = 0.0750 \text{ mol}$

 $n_{HNO3} = 2(0.0750) = 0.150 \text{ mol}$

 $C_{HNO3} = 0.150 \text{mol}/0.600 \text{ L} = 0.250 \text{ M}$

3. Calculate the mass of NaOH required to titrate 400.0 mL of 0.50 M $HBr_{(aq)}$.

$$n_{HBr} = (.400)(0.50) = 0.200 \text{ mol} = n_{H}^{+} = n_{OH}^{-} = n_{NaOH}$$

$$m_{NaOH} = n \times mm = (0.200 \text{ mol})(40.00 \text{ g/mol}) = 8.00 \text{ g}$$

OR

$$NaOH + HBr \rightarrow NaBr + H_2O$$

$$n_{HBr} = (.400)(0.50) = 0.200 \text{ mol}$$

 $n_{HBr} = n_{NaOH}$

$$m_{NaOH} = n \times mm = (0.200 \text{ mol})(40.00 \text{ g/mol}) = 8.00 \text{ g}$$

4. If 8.75 g of Ba(OH)₂ neutralizes 8.00 L of $HCl_{(aq)}$, what is the concentration of $HCl_{(aq)}$?

$$Ba(OH)_2$$
 HCl
 $m = 8.75 g$ V = 8.00 L
 $C = ?$

$$n_{Ba(OH)2} = m/mm = 8.75 g / 171.31 g/mol = 0.511 mol$$

$$n_{OH}^{-}$$
 = 2 (0.0511) = 0.102 mol = n_{H}^{+} = n_{HCl}

$$C_{HCI} = \text{n/v} = 0.102 \text{ mol/8.00 l} = \frac{0.0128 \text{ mol/L}}{1.000 \text{ mol/L}}$$

OR

$$Ba(OH)_2 + 2HCl \rightarrow BaCl_2 + 2H_2O$$

$$n_{Ba(OH)2} = m/mm = 8.75 g/171.31 g/mol = 0.511 mol$$

$$n_{HCI}$$
 = 2(0.511) = 0.102 mol

$$C_{HCI} = \text{n/v} = 0.102 \text{ mol/8.00 l} = 0.0128 \text{ mol/L}$$

5. Calculate the volume of calcium hydroxide required to titrate 500.0 mL of 0.030 M phosphoric acid.

 $Ca(OH)_2$ H_3PO_4

C = 0.10 M V = 500.0 mL or 0.500 L

V = ? C = 0.030 M

 $n_{H3PO4} = (0.030)().500) = 0.0150 \text{ mol}$

 $n_{H}^{\dagger} = \frac{3}{(0.0150)} = 0.0450 \text{ mol}$ since 3 mol of H⁺ will be released from 1 mol of H₃PO₄

 $n_{OH}^{-} = 0.0450 \text{ mol}$ since at equivalence point

 $n_{Ca(OH)2} = 0.0450/2 = 0.0225 \text{ mol}$ since 2 mol of OH are in 1 mol of Ca(OH)₂

i.e. $Ca(OH)_2 - Ca^{2+} + 2OH^{-}$

 $V_{Ca(OH)2} = n/c = 0.0225 \text{ mol}/0.020 \text{ mol}/L = 1.13 \text{ L}$

OR

$$3Ca(OH)_2 + 2H_3PO_4 -- Ca_3(PO_4)_2 + 6H_2O$$

 $n_{H3PO4} = (0.030)().500) = 0.0150 \text{ mol}$

 $n_{Ca(OH)2} = 0.0150/2 \times 3 = 0.0225 \text{ mol}$

 $V_{Ca(OH)2} = n/c = 0.0225 \text{ mol}/0.020 \text{ mol}/L = 1.13 \text{ L}$

6. A 8.24 g sample of a solid organic acid is dissolved in water. It is found that 47.3 mL of 0.100 M NaOH are needed to titrate the acidic solution. Assuming that there is only one hydrogen in the acidic solid, determine the molar mass of the solid acid. What would the molar mass be if the acid has two hydrogens?

<u>Acid</u> <u>NaOH</u>

m = 5.25 g V = 47.3 mL = 0.0473 L

Formula: HA C = 0.100 M

 $n_{NaOH} = cxv = (0.0473)(0.100) = 0.00473 \text{ mol}$

 $n_{OH}^{-} = 0.00473 \text{ mol}$

 $n_{H}^{+} = 0.00473 \text{ mol}$

n_{HA} = 0.00473 mol if acid is monoprotic

mm = m/n = 8.24 g/0.00473 mol = 1742 g/mol

If acid is Diprotic H_2A then $n_{acid} = 0.00473/2 = 0.00237$ mol And mm = 8.24g/0.00237 mol = 3477 g/mol

OR

 $n_{NaOH} = cxv = (0.0473)(0.100) = 0.00473 \text{ mol}$

 $n_{HA} = 0.00473 \text{ mol}$

mm = m/n = 8.24 g/0.00473 mol = 1742 g/mol

If acid is diprotic:

$$H_2A + 2NaOH -- Na_2A + 2H_2O$$

 $n_{NaOH} = cxv = (0.0473)(0.100) = 0.00473$ mol

 $n_{HA} = 0.00473/2 = 0.00237 \text{ mol}$

mm = 8.24g/0.00237 mol = 3477 g/mol