Orbitals

- Are regions of space around the nucleus where the probability of finding an electron is high
- The electron no longer has a set path that it follows; it can be anywhere within the orbital
- Maximum of 2 electrons per orbital
- p sublevel has 3 orbitals, d has 5 and f has 7
- each orbital has a distinctive shape
 S's are spherical, 1s being smaller than 2s, etc
 P's are somewhat like the figure 8, on the x, y and z axes
 D's and f's are crazy!

Orbital diagrams:

• are similar to electron configurations except that electrons are shown in their orbital and their direction of spin is shown

i.e. Na

Electron configuration	1s ²	2s ²	2p ⁶	3s¹
Orbital diagram				
	1s	2s	2p	3 <i>s</i>

<u>Pauli Exclusion Principle:</u> no 2 electrons can have the same 4 quantum numbers; no 2 electrons in the same orbital can have the same spin.

<u>Hund's Rule</u>: electrons spread out as much as possible in orbitals; they don't double up in one orbital until they have to

Draw	orbital	diagrams	for:
------	---------	----------	------

Nitrogen:

Oxygen:
Scandium:
Manganese:
Magnesium ion:
Nitride ion:
Iron:
Fe ²⁺ : Fe ³⁺
*Note: d orbitals are the most stable when they are completely filled, followed by when they are half filled.

Nickel:

Ni ²⁺ :	
Ni ³⁺ :	
Pb ²⁺ :	
Pb ⁴⁺ :	
Anomalous Orbital Diagrams:	
Cr:	
Cu:	