Reversible Reactions

Consider the following two reactions:

$$ICE \rightarrow WATER$$

WATER $\rightarrow ICE$

- Both reactions can occur; that is, they are both spontaneous reactions
 (although the temperature has to be different)
- The above reaction is called a reversible reaction
- A reversible reaction is a reaction in which both the forward and reverse reactions are spontaneous
- Not all reactions are reversible

For example, consider the following reaction:

$$A + B \rightarrow C$$
 where $\Delta H = (-)$ and $\Delta S = (+)$

We know that this reaction is _____ spontaneous at _____ temperature.

However, consider its reverse reaction:

$$C \rightarrow A + B$$

We know that for this reaction, $\Delta H = ()$ and $\Delta S = ()$ and therefore it is spontaneous at ______ temperature.

We can therefore conclude that the reaction $A + B \rightarrow C$ is NOT a reversible reaction.

RECALL: In the previous unit, we learned

- 1) That if ΔH is negative in one direction, it will be _____ in the reverse direction. The same holds true for ΔS and ΔG .
- 2) That for a reaction to be spontaneous, ΔG must be _____
 - Some reactions are reversible at the <u>same temperature</u>; that is, unlike the example of ice and water, both reactions are spontaneous at the same temperature.

$$A + B \rightarrow C$$
 at 30° C and $C \rightarrow A + B$ at 30° C

- This means that ΔG must be _____ for both reactions. This isn't possible, therefore ΔG = _____ for this type of reaction.
- Since both reactions are occurring at the same time, we can write the reaction as: $A + B \Leftrightarrow C$ and is called an equilibrium reaction.

Equilibrium Reactions

The equilibrium reaction below was studied at 448°C:

$$H_{2(g)} + I_{2(g)} \longleftrightarrow 2HI_{(g)}$$
Purple colourless

The following observations were made:

- The purple colour never completely disappears
- The same intensity of purple is present at the end of the reaction regardless of whether the reaction starts with, for example, 1 mole each of H_2 and I_2 or it starts with 2 moles of H_2 .
- The following relationship exists between the final concentrations of H_2 , I_2 , and HI regardless of starting concentrations:

$$\frac{[HI]^2}{[H_2][I_2]}$$
 = 49.5 \leftarrow this value changes if T changes

- 49.5 is called the equilibrium constant K_{eq} and the relationship is called the equilibrium expression.
- The equilibrium expression can easily be derived for any equilibrium reaction
 the products go in the numerator, the reactants in the denominator and
 the coefficients become the exponents.

$$\frac{2A + 3B \longleftrightarrow C}{K_{eq}} = \frac{[C]}{[A]^2 [B]^3}$$