Answers: Rates of Reactions Practice Questions

Rate Laws:

1.
$$2NO_{(g)} + H_{2(g)} \rightarrow N_2O_{(g)} + H_2O_{(g)}$$

	Initial Concentration (mol/L)		Initial Rate (mol/L.s)
	$NO_{(g)}$	$H_{2(g)}$	
	/ 0.075	0.400	0.005
	0.150	0.200	0.010
1	0.150	0.400	0.020

- a) Find the rate law. Rate = $k[NO]^2[H_2]$
- b) Determine the value of the rate constant.

$$0.005 = k (0.075)^2 (0.400)$$

 $K = 2.22 L^2 / mol^2 s$

2.
$$NH_4^+_{(aq)} + NO_2^-_{(aq)} \rightarrow N_{2(g)} + 2H_2O_{(l)}$$

Initial Concent	Initial Concentration (mol/L)	
NO ₂ - (aq)	NO_2^- (aq) NH^+ (aq)	
0.010	0.020	5.4 x 10 ⁻⁷
0.020	0.020	10.8×10^{-7}
0.040	0.020	21.6 × 10 ⁻⁷
0.020	0.0202	10.8×10^{-7}
0.020	0.0404	21.6 × 10 ⁻⁷
0.020	0.0606	32.4×10^{-7}

- a) Write the rate law. Rate = $k[NO_2][NH_4^+]$
- b) Calculate the rate constant.

$$5.4 \times 10^{-7} = k(0.01)(0.02)$$

3.

c) Calculate the initial rate if $[NO_2^-(aq)] = 0.10$ M and $[NH^+(aq)] = 0.10$ M.

Rate = $2.7 \times 10^{-5} \text{ mol/L} \cdot \text{s}$

$$4OH_{(g)} + H_2S_{(g)} \rightarrow SO_{2(g)} + 2H_2O_{(g)} + H_{2(g)}$$

Initial Concentration (mol/L)		Rate of Disappearance of
$OH_{(g)}$	$H_2S_{(g)}$	$H_2S(mol/L.s)$
1.3 × 10 ⁻⁸	2.1 × 10 ⁻⁸	1.4 × 10 ⁻⁶ > 4-3
3.9×10^{-8}	2.1 x 10 ⁻⁸	$/ 4.2 \times 10^{-6}$
3.9×10^{-8}	4.2×10^{-8}	8.4 × 10 ⁻⁶

- a) Write the rate law. Rate = $k[OH][H_2S]$
- b) Calculate the rate constant.

$$1.4 \times 10^{-6} = k(1.3 \times 10^{-8})(2.1 \times 10^{-8})$$

 $K = 5.1 \times 10^9 \, L/mol \cdot s$

c) Calculate the rate of disappearance of H_2S when $[OH_{(g)}] = 1.7 \times 10^{-8}$ M and $[H_2S_{(g)}] = 1.0 \times 10^{-8}$ M. What is the rate of disappearance of OH at the same time?

Rate =
$$5.1 \times 10^{9} (1.7 \times 10^{-8})(1.0 \times 10^{-8})$$

Rate = 8.7×10^{-7} mol/L·s

Rate of disappearance of OH at the same time is $4(8.7 \times 10^{-7}) = 3.5 \times 10^{-6}$ mol/L.s

4. The rate law for the reaction: $A + B + 2C \rightarrow D + E$ is rate = $k[A]^2[C]$.

a) Complete the chart.

Experiment	[A] (mol/L)	[B] (mol/L)	[C] (mol/L)	Initial rate (mol/L.min)	K
1	1.0	4.0	2.0	8.0	4.0
2	2.0	2.0	1.0	16	4.0

b) How can the rate constant be increased? Increase temperature

Mechanisms and Rate Laws:

5. The mechanism for a reaction is:

$$NO_2CI \rightarrow NO_2 + CI$$
 (slow)
 $NO_2CI + CI \rightarrow NO_2 + CI_2$ (fast)

- a) What is the overall reaction? $2NO_2Cl \rightarrow 2NO_2 + Cl_2$
- b) What is the reaction intermediate? Cl
- c) What is the rate law? Rate = k[NO₂Cl]
- 6. If a mechanism for a reaction is:

$$A + B \rightarrow C + D$$
 (slow)
 $D + A \rightarrow F + F$ (fast)

- a) If the first step is the rate-determining step, which step is the fast step? Second step
- b) Write the rate law for the reaction. Rate = k[A][B]
- c) What is the overall reaction? $2A + B \rightarrow C + 2F$

7. For the reaction of:

$$H_2O_2 + 2H^+ + 2I^- \rightarrow I_2 + 2H_2O$$

A proposed mechanism is:

$$H_2O_2 + I^- \rightarrow H_2O + OI^-$$
 (slow)
 $H^+ + OI^- \rightarrow HOI$ (rapid)
 $HOI + H^+ + I^- \rightarrow I_2 + H_2O$ (rapid)

For this mechanism to be consistent with the experimental data, what must the observed rate law be?

Rate =
$$k[H_2O_2][I^-]$$

8. At low pressure, the reaction:

$$2NO_2 + F_2 \rightarrow 2NO_2F$$

Follows the rate law: Rate = $k[NO_2][F_2]$

Suggest a mechanism that is consistent with the rate law.

$$NO_2 + F_2 \rightarrow NO_2F_2$$
 (slow)
 $NO_2 + NO_2F_2 \rightarrow 2NO_2F$ (fast)

9. For the reaction: $2A + B \rightarrow C$, the rate of formation of C was measured for a number of different initial concentrations of A and B, with the following results:

Initial Concer	itration (mol/L)	Rate of Appearance of C
A	В	(mol/L.s)
0.10	0.10	2.0 × 10 ⁻³
0.20	0.10	$/ 8.0 \times 10^{-3}$
0.30	0.10	1.8×10^{-2}
0.20	0.20	8.0×10^{-3}
0.30	0.30	1.8 × 10 ⁻²

- a) Write the rate law. Rate = $k[A]^2$
- b) Calculate the rate constant. K = 0.20 L/mol·s
- c) Suggest a two-step mechanism that is consistent with the experimental data.

$$2A \rightarrow D \text{ (slow)}$$

D+B \rightarrow C \text{ (fast)}

10. For the reaction: $I^- + OCl^- \rightarrow Cl^- + OI^-$, the following data was collected:

Initial Concentr	Initial Concentration (mol/L)	
I-	I- OCI-	
0.10	0.10	1.0 × 10⁻³ → → → → → → → → → → → → → → → → → → →
0.20	0.10	2.0×10^{-3}
0.30	0.30	9.0 x 10 ⁻³ → ★ V
0.30	0.60	1.8×10^{-2}

- a) Write the rate law. Rate = $k[I^{-}][OCl^{-}]$
- b) Calculate the rate constant. K = 0.10 L/mol·s
- c) Suggest a two-step mechanism that is consistent with the experimental data.

$$I^- + OCl^- \rightarrow IOCl^{2-}$$
 (slow)
 $IOCl^- \rightarrow Cl^- + OI^-$ (fast)

11. The reaction: $NO_2 + CO \rightarrow CO_2 + NO$ is known to be a one-step reaction at very high temperatures. At a much lower temperature, the following data was collected:

Initial Concer	tration (mol/L)	Rate of Production of CO ₂
NO ₂	СО	(mol/L.s)
0.010	0.010	2.1 × 10 ⁻⁸
0.020	0.020	8.4 x 10 ⁻⁸
0.040	0.020	4 3.36 × 10 ⁻⁷
0.020	0.040	8.4 x 10 ⁻⁸

- a) Write the rate law. Rate = $k[NO_2]^2$
- b) Calculate the rate constant. $K = 2.1 \times 10^{-4} \text{ L/mol·s}$
- c) Suggest a two-step mechanism that is consistent with the experimental data.

$$2NO_2 \rightarrow N_2O_4$$
 (slow)

$$N_2O_4 + CO \rightarrow CO_2 + NO + NO_2$$
 (fast)