SCH4U November 2016

Review for Solutions Test

- 1. What is the K_{sp} of PbCl₂ if, in a saturated solution of lead (II) chloride, the [Cl⁻] is 0.032 mol/L?
- 2. The solubility of calcium sulfate is 0.67 g/L. Calculate the K_{sp} for calcium sulfate.
- 3. The solubility of copper (II) hydroxide is 1.8 x 10^{-6} g/100 mL. Calculate the K_{sp} for Cu(OH)₂.
- 4. Calculate the calcium ion concentration in a saturated solution of calcium carbonate.
- 5. What is the solubility, in g/L, of calcium phosphate? K_{sp} for calcium phosphate is 1.2 x 10⁻²⁶.
- 6. Which is more soluble, calcium fluoride or silver chloride?
- 7. The concentration of Ag^+ in a saturated solution of Ag_2CrO_4 is 1.5×10^{-4} mol/L. Calculate the K_{sp} for Ag_2CrO_4 .
- 8. 1.0×10^{-3} moles of Ba²⁺ are added with 6.0×10^{-3} moles of 50_4^{2-} to make a 1 L solution. What is the nature of the solution?
- 9. If 2.00 mL of 0.200M NaOH are added to 1.00 L of 0.100M CaCl₂, will a precipitate form?
- 10. How much precipitate of BaCO3 will form when 20.0 mL of 0.10 M Ba(NO₃)₂ is added to 50.0 mL of 0.10 M Na₂CO₃?
- 11. Consider #10. When equilibrium is reached, what will a) $[CO_3^{2-}]$ be? b) $[Ba^{2+}]$ be?
- 12. What mass of BaSO₄ precipitate will form when 50 mL of 0.10M Na₂SO₄ is mixed with 50 mL of 0.20 M BaCl₂?
- 13. Calculate the molar solubility of BaSO₄ in
- a) pure water
- b) in 1.0 M SO_4^{2-} .
- 14. Calculate the molar solubility of AgCl in a 1.0 L solution containing 10.0 g of CaCl₂.
- 15. How many grams of CaCO₃ will dissolve in 300 mL of 0.050 M Ca(NO₃)₂?
- 16. a) Calculate the molar solubility of MgF_{2.}
 - b) Calculate the solubility of MgF2 in g/100 mL.
 - c) How many grams of MgF2 will dissolve in a 350 mL solution of 0.25 M NaF?
 - d) If 50 mL of 0.50 M solution of $CaCl_2$ are added to 250 mL of a saturated solution MgF₂, will a precipitate form? K_{sp} for CaF_2 is 3.9 \times 10⁻¹¹. Show your calculations.